Copied to
clipboard

G = C2×C338D4order 432 = 24·33

Direct product of C2 and C338D4

direct product, metabelian, supersoluble, monomial

Aliases: C2×C338D4, C62.115D6, (C3×C6)⋊5D12, (C32×C6)⋊8D4, C3323(C2×D4), (C6×Dic3)⋊5S3, C62(C12⋊S3), C61(C3⋊D12), (C3×Dic3)⋊13D6, C3210(C2×D12), (C32×C6).60C23, (C3×C62).31C22, (C32×Dic3)⋊13C22, C6.70(C2×S32), (C2×C6).44S32, (C2×C3⋊S3)⋊20D6, (Dic3×C3×C6)⋊7C2, C33(C2×C12⋊S3), C32(C2×C3⋊D12), (C22×C3⋊S3)⋊9S3, Dic34(C2×C3⋊S3), (C3×C6)⋊10(C3⋊D4), (C6×C3⋊S3)⋊17C22, C22.16(S3×C3⋊S3), C6.23(C22×C3⋊S3), C3217(C2×C3⋊D4), (C2×Dic3)⋊4(C3⋊S3), (C3×C6).149(C22×S3), (C22×C33⋊C2)⋊2C2, (C2×C33⋊C2)⋊10C22, (C2×C6×C3⋊S3)⋊4C2, C2.23(C2×S3×C3⋊S3), (C2×C6).25(C2×C3⋊S3), SmallGroup(432,682)

Series: Derived Chief Lower central Upper central

C1C32×C6 — C2×C338D4
C1C3C32C33C32×C6C32×Dic3C338D4 — C2×C338D4
C33C32×C6 — C2×C338D4
C1C22

Generators and relations for C2×C338D4
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e4=f2=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf=b-1, cd=dc, ce=ec, fcf=c-1, ede-1=fdf=d-1, fef=e-1 >

Subgroups: 3160 in 452 conjugacy classes, 92 normal (18 characteristic)
C1, C2, C2, C2, C3, C3, C3, C4, C22, C22, S3, C6, C6, C6, C2×C4, D4, C23, C32, C32, C32, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C2×D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3×C6, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C33, C3×Dic3, C3×C12, S3×C6, C2×C3⋊S3, C2×C3⋊S3, C62, C62, C62, C2×D12, C2×C3⋊D4, C3×C3⋊S3, C33⋊C2, C32×C6, C32×C6, C3⋊D12, C6×Dic3, C12⋊S3, C6×C12, S3×C2×C6, C22×C3⋊S3, C22×C3⋊S3, C32×Dic3, C6×C3⋊S3, C6×C3⋊S3, C2×C33⋊C2, C2×C33⋊C2, C3×C62, C2×C3⋊D12, C2×C12⋊S3, C338D4, Dic3×C3×C6, C2×C6×C3⋊S3, C22×C33⋊C2, C2×C338D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊S3, D12, C3⋊D4, C22×S3, S32, C2×C3⋊S3, C2×D12, C2×C3⋊D4, C3⋊D12, C12⋊S3, C2×S32, C22×C3⋊S3, S3×C3⋊S3, C2×C3⋊D12, C2×C12⋊S3, C338D4, C2×S3×C3⋊S3, C2×C338D4

Smallest permutation representation of C2×C338D4
On 72 points
Generators in S72
(1 29)(2 30)(3 31)(4 32)(5 43)(6 44)(7 41)(8 42)(9 13)(10 14)(11 15)(12 16)(17 27)(18 28)(19 25)(20 26)(21 53)(22 54)(23 55)(24 56)(33 68)(34 65)(35 66)(36 67)(37 58)(38 59)(39 60)(40 57)(45 72)(46 69)(47 70)(48 71)(49 64)(50 61)(51 62)(52 63)
(1 71 27)(2 72 28)(3 69 25)(4 70 26)(5 38 53)(6 39 54)(7 40 55)(8 37 56)(9 36 63)(10 33 64)(11 34 61)(12 35 62)(13 67 52)(14 68 49)(15 65 50)(16 66 51)(17 29 48)(18 30 45)(19 31 46)(20 32 47)(21 43 59)(22 44 60)(23 41 57)(24 42 58)
(1 61 56)(2 62 53)(3 63 54)(4 64 55)(5 72 12)(6 69 9)(7 70 10)(8 71 11)(13 44 46)(14 41 47)(15 42 48)(16 43 45)(17 65 58)(18 66 59)(19 67 60)(20 68 57)(21 30 51)(22 31 52)(23 32 49)(24 29 50)(25 36 39)(26 33 40)(27 34 37)(28 35 38)
(1 8 34)(2 35 5)(3 6 36)(4 33 7)(9 25 54)(10 55 26)(11 27 56)(12 53 28)(13 19 22)(14 23 20)(15 17 24)(16 21 18)(29 42 65)(30 66 43)(31 44 67)(32 68 41)(37 61 71)(38 72 62)(39 63 69)(40 70 64)(45 51 59)(46 60 52)(47 49 57)(48 58 50)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 29)(2 32)(3 31)(4 30)(5 68)(6 67)(7 66)(8 65)(9 60)(10 59)(11 58)(12 57)(13 39)(14 38)(15 37)(16 40)(17 71)(18 70)(19 69)(20 72)(21 64)(22 63)(23 62)(24 61)(25 46)(26 45)(27 48)(28 47)(33 43)(34 42)(35 41)(36 44)(49 53)(50 56)(51 55)(52 54)

G:=sub<Sym(72)| (1,29)(2,30)(3,31)(4,32)(5,43)(6,44)(7,41)(8,42)(9,13)(10,14)(11,15)(12,16)(17,27)(18,28)(19,25)(20,26)(21,53)(22,54)(23,55)(24,56)(33,68)(34,65)(35,66)(36,67)(37,58)(38,59)(39,60)(40,57)(45,72)(46,69)(47,70)(48,71)(49,64)(50,61)(51,62)(52,63), (1,71,27)(2,72,28)(3,69,25)(4,70,26)(5,38,53)(6,39,54)(7,40,55)(8,37,56)(9,36,63)(10,33,64)(11,34,61)(12,35,62)(13,67,52)(14,68,49)(15,65,50)(16,66,51)(17,29,48)(18,30,45)(19,31,46)(20,32,47)(21,43,59)(22,44,60)(23,41,57)(24,42,58), (1,61,56)(2,62,53)(3,63,54)(4,64,55)(5,72,12)(6,69,9)(7,70,10)(8,71,11)(13,44,46)(14,41,47)(15,42,48)(16,43,45)(17,65,58)(18,66,59)(19,67,60)(20,68,57)(21,30,51)(22,31,52)(23,32,49)(24,29,50)(25,36,39)(26,33,40)(27,34,37)(28,35,38), (1,8,34)(2,35,5)(3,6,36)(4,33,7)(9,25,54)(10,55,26)(11,27,56)(12,53,28)(13,19,22)(14,23,20)(15,17,24)(16,21,18)(29,42,65)(30,66,43)(31,44,67)(32,68,41)(37,61,71)(38,72,62)(39,63,69)(40,70,64)(45,51,59)(46,60,52)(47,49,57)(48,58,50), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,29)(2,32)(3,31)(4,30)(5,68)(6,67)(7,66)(8,65)(9,60)(10,59)(11,58)(12,57)(13,39)(14,38)(15,37)(16,40)(17,71)(18,70)(19,69)(20,72)(21,64)(22,63)(23,62)(24,61)(25,46)(26,45)(27,48)(28,47)(33,43)(34,42)(35,41)(36,44)(49,53)(50,56)(51,55)(52,54)>;

G:=Group( (1,29)(2,30)(3,31)(4,32)(5,43)(6,44)(7,41)(8,42)(9,13)(10,14)(11,15)(12,16)(17,27)(18,28)(19,25)(20,26)(21,53)(22,54)(23,55)(24,56)(33,68)(34,65)(35,66)(36,67)(37,58)(38,59)(39,60)(40,57)(45,72)(46,69)(47,70)(48,71)(49,64)(50,61)(51,62)(52,63), (1,71,27)(2,72,28)(3,69,25)(4,70,26)(5,38,53)(6,39,54)(7,40,55)(8,37,56)(9,36,63)(10,33,64)(11,34,61)(12,35,62)(13,67,52)(14,68,49)(15,65,50)(16,66,51)(17,29,48)(18,30,45)(19,31,46)(20,32,47)(21,43,59)(22,44,60)(23,41,57)(24,42,58), (1,61,56)(2,62,53)(3,63,54)(4,64,55)(5,72,12)(6,69,9)(7,70,10)(8,71,11)(13,44,46)(14,41,47)(15,42,48)(16,43,45)(17,65,58)(18,66,59)(19,67,60)(20,68,57)(21,30,51)(22,31,52)(23,32,49)(24,29,50)(25,36,39)(26,33,40)(27,34,37)(28,35,38), (1,8,34)(2,35,5)(3,6,36)(4,33,7)(9,25,54)(10,55,26)(11,27,56)(12,53,28)(13,19,22)(14,23,20)(15,17,24)(16,21,18)(29,42,65)(30,66,43)(31,44,67)(32,68,41)(37,61,71)(38,72,62)(39,63,69)(40,70,64)(45,51,59)(46,60,52)(47,49,57)(48,58,50), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,29)(2,32)(3,31)(4,30)(5,68)(6,67)(7,66)(8,65)(9,60)(10,59)(11,58)(12,57)(13,39)(14,38)(15,37)(16,40)(17,71)(18,70)(19,69)(20,72)(21,64)(22,63)(23,62)(24,61)(25,46)(26,45)(27,48)(28,47)(33,43)(34,42)(35,41)(36,44)(49,53)(50,56)(51,55)(52,54) );

G=PermutationGroup([[(1,29),(2,30),(3,31),(4,32),(5,43),(6,44),(7,41),(8,42),(9,13),(10,14),(11,15),(12,16),(17,27),(18,28),(19,25),(20,26),(21,53),(22,54),(23,55),(24,56),(33,68),(34,65),(35,66),(36,67),(37,58),(38,59),(39,60),(40,57),(45,72),(46,69),(47,70),(48,71),(49,64),(50,61),(51,62),(52,63)], [(1,71,27),(2,72,28),(3,69,25),(4,70,26),(5,38,53),(6,39,54),(7,40,55),(8,37,56),(9,36,63),(10,33,64),(11,34,61),(12,35,62),(13,67,52),(14,68,49),(15,65,50),(16,66,51),(17,29,48),(18,30,45),(19,31,46),(20,32,47),(21,43,59),(22,44,60),(23,41,57),(24,42,58)], [(1,61,56),(2,62,53),(3,63,54),(4,64,55),(5,72,12),(6,69,9),(7,70,10),(8,71,11),(13,44,46),(14,41,47),(15,42,48),(16,43,45),(17,65,58),(18,66,59),(19,67,60),(20,68,57),(21,30,51),(22,31,52),(23,32,49),(24,29,50),(25,36,39),(26,33,40),(27,34,37),(28,35,38)], [(1,8,34),(2,35,5),(3,6,36),(4,33,7),(9,25,54),(10,55,26),(11,27,56),(12,53,28),(13,19,22),(14,23,20),(15,17,24),(16,21,18),(29,42,65),(30,66,43),(31,44,67),(32,68,41),(37,61,71),(38,72,62),(39,63,69),(40,70,64),(45,51,59),(46,60,52),(47,49,57),(48,58,50)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,29),(2,32),(3,31),(4,30),(5,68),(6,67),(7,66),(8,65),(9,60),(10,59),(11,58),(12,57),(13,39),(14,38),(15,37),(16,40),(17,71),(18,70),(19,69),(20,72),(21,64),(22,63),(23,62),(24,61),(25,46),(26,45),(27,48),(28,47),(33,43),(34,42),(35,41),(36,44),(49,53),(50,56),(51,55),(52,54)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G3A···3E3F3G3H3I4A4B6A···6O6P···6AA6AB6AC6AD6AE12A···12P
order122222223···33333446···66···6666612···12
size1111181854542···24444662···24···4181818186···6

66 irreducible representations

dim1111122222222444
type+++++++++++++++
imageC1C2C2C2C2S3S3D4D6D6D6D12C3⋊D4S32C3⋊D12C2×S32
kernelC2×C338D4C338D4Dic3×C3×C6C2×C6×C3⋊S3C22×C33⋊C2C6×Dic3C22×C3⋊S3C32×C6C3×Dic3C2×C3⋊S3C62C3×C6C3×C6C2×C6C6C6
# reps14111412825164484

Matrix representation of C2×C338D4 in GL8(𝔽13)

10000000
01000000
00100000
00010000
000012000
000001200
00000010
00000001
,
10000000
01000000
000120000
001120000
0000121200
00001000
00000010
00000001
,
10000000
01000000
000120000
001120000
00000100
0000121200
00000010
00000001
,
10000000
01000000
00100000
00010000
00001000
00000100
0000001212
00000010
,
46000000
89000000
00100000
00010000
00001000
00000100
00000010
0000001212
,
10000000
312000000
00010000
00100000
000012000
00001100
00000010
0000001212

G:=sub<GL(8,GF(13))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0],[4,8,0,0,0,0,0,0,6,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12],[1,3,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12] >;

C2×C338D4 in GAP, Magma, Sage, TeX

C_2\times C_3^3\rtimes_8D_4
% in TeX

G:=Group("C2xC3^3:8D4");
// GroupNames label

G:=SmallGroup(432,682);
// by ID

G=gap.SmallGroup(432,682);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,141,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^4=f^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f=b^-1,c*d=d*c,c*e=e*c,f*c*f=c^-1,e*d*e^-1=f*d*f=d^-1,f*e*f=e^-1>;
// generators/relations

׿
×
𝔽